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Selection and Classification of Volatile Compounds of Apricot Using the 
RV Coefficient 

Pascal Schlich* and Elisabeth Guichard 

The RV coefficient is a measure of similarity between two sets of variables recorded from the same sample. 
If the number of variables in a principal-component analysis is high, the RV coefficient allows selection 
of a few variables without disturbing the relative location of individuals in the first sample plots. This 
selection is explained and improved by a classification of variables based on the RV coefficient to define 
proximities between variable clusters. The groups are then submitted to a principal-coordinate analysis 
and minimum spanning tree using the RV matrix among the groups in order to describe relations between 
variable cluster. This statistical approach appears to be a very useful tool for chromatographic data 
handling. An example is given in a study of 56 volatile compounds quantified in 18 samples of apricots. 
It shows that compounds are grouped according to the chemical classes. 

Progress in gas chromatography allows the separation 
and quantification of a great number of volatile compounds 
in foods or beverages. Assume that n chromatograms have 
been processed and p compounds quantified in each. 
These data are customarily arranged into a n X p matrix 
X, in which the ith row contains the p observations of 
variables (volatile compounds) recorded on the ith indi- 
vidual (chromatogram). The sample can be seen geome- 
trically as a configuration of n points in a p-dimensional 
space. 

Today, principal-component analysis (PCA) (Morrisson, 
1976) is a classical tool in food science, as shown in the 
bibliography of Martens and Harries (1983) and in the 
methodological paper of Piggot and Sharman (1986). PCA 
gives an orthogonal system of principal directions of the 
variance of this configuration. The answer is given by the 
first eigenvectors of the p x p covariance matrix C of the 
compounds; if the variables have been previously auto- 
scaled, C becomes the correlation matrix. Each eigenvector 
is defined by a linear combination of the p compounds. 

Laboratoire de Recherches sur les ArGmes, Institut 
National de la Recherche Agronomique (INRA), 17 Rue 
Sully, 21034 Dijon Cedex, France. 

The interpretation of a principal component amounts to 
the comparison of the p coefficients of the associated linear 
combination. 

A few problems appear when p is large (for instance 
higher than 30). On one hand, matrix C cannot be loaded 
in the memory of some microcomputers and the length of 
computing time would be prohibitive. On the other hand, 
and this is the main problem, the interpretation of a linear 
combination of so many variables would certainly be 
tiresome and not very convincing, In fact, a few com- 
pounds only are generally heavily loaded on the first 
principal axes, while the other ones only bring a back- 
ground noise. However, it is often difficult to distinguish 
between that noise and main information and to decide 
which are the relevant correlations between variables and 
principal components. It would be of great interest to have 
previous knowledge of the relevant variables and then 
perform the PCA with these compounds only. Moreover, 
if p is greater than n, PCA can be performed, but p-n 
dimensions of the sample configuration space are of course 
unnecessary. 

The RV coefficient (Escoufier, 1970,1973) is a measure 
of similarity, varying from 0 to 1, between p-dimensional 
and q-dimensional configurations of the same sample. It 
can be seen as a generalized correlation coefficient between 
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two sets of p and q variables observed on the same n 
objects. The closer to 1 the RV is, the better correlated 
the two sets of variables, the nearer the two sample con- 
figurations and therefore the corresponding principal 
sample plots. When PCA is performed on the subset of 
the r variables that optimize the RV coefficient with all 
the p compounds, principal sample plots are obtained as 
close as possible to those of the whole PCA. 

Any statistical method of classification of individuals 
can be transposed to variables with the RV coefficient to 
define similarity between groups of variables. The selected 
variables can therefore be considered as the heads of 
clusters of well-correlated variables. Through these heads, 
the unselected compounds of the PCA can find an inter- 
pretation. 

In this paper, an algorithm of classification has been 
adapted and applied to the variables. This algorithm is 
currently called in France Nu6es Dynamiques (Diday et 
al., 1980). 

A principal-coordinate analysis (PCO) (Gower, 1966) can 
then be performed on the symmetric matrix of the RV 
coefficients between any two clusters of compounds ob- 
tained from the above classification. The first variable 
cluster plot of PCO and the superimposed minimum 
spanning tree (MST) (Gower, 1969) give a good picture of 
the relationship between clusters of compounds. 

All of these statistical methods will be more precisely 
detailed in the next section. Application and discussion 
of these methods in a study (described in the Experimental 
Section) of 56 volatile compounds quantified in 18 samples 
of apricot will demonstrate the usefulness of RV coefficient 
for chromatographic data handling. 
STATISTICAL METHODS 

Selection of Variables in PCA by Optimizing the 
RV Coefficient. The RV coefficient and its properties 
were first described by Escoufier (1970, 1973). I t  can be 
used to select variables and metrics in order to reduce the 
number of variables in a single PCA or to establish links 
between two PCA on the same objects (Escoufier and 
Robert, 1979; Bonifas et al., 1984). First applications of 
these methods in food science have been recently presented 
by Schlich et al. (1987). The present paper more partic- 
ularly deals with a single set of variables and the usual 
identity metric. New developments in variable classifi- 
cation are presented. 

Let X be an n X p data matrix, and assume that all the 
p variables (columns) have been centered to have means 
equal to 0. I t  is well-known that the n X n matrix XX’ 
(X‘ is the X transpose matrix) contains all of the usual 
scalar products between the objects and defines within a 
translation or a rotation a sample configuration. In fact, 
the matrix Sx = XX’/[tr(XX’.XX’)]1/2 is used in order to 
characterize a sample configuration, independently of 
global changes of scale. The tr notation means the trace 
of a square matrix, i.e. the sum of its diagonal values. Let 
Y be another n X q data matrix. To have a measure of 
closeness of the two sample configurations, there is a need 
to define one distance between Sx and SV For A = XX’ 
and B = YY’, the usual scalar product on the square 
matrix space is (A, B )  = tr(AB’). I t  defines a norm IlAll 
= [tr(AA’)]’l2, which is equal to 1 for the S matrices. 
Thus, the distance between Sx and Sy is given by (1). 

2 [I - [tr(XX’.YY’) / [tr(XX’.Xx’).tr(YY’.YY’)] 1/21 Ill2 
(1) 

The quantity tr(XX’.YY’)/ [tr(XX’.XX’).tr(YY’.YY’)]1/2 
is called RV(X, Y). It is clear from (1) that the closer the 

1 1 %  - SYl l  = 
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two configurations are, the higher the RV is. As trace is 
a commutative operation, it can be seen that 
W X ,  Y) = tr(CXYGX) / [~~(CXX.CXX).~~(C~Y.CYY)I’/~ 

(2) 
in which Cxx, Cyy, CXY, and CYx are equal to X’XIn, 
Y’YIn, X‘YIn, and Y‘XIn and are the covariance and the 
cross-covariance matrices of the two sets of variables or 
the correlation and the cross-correlation matrices if these 
variables have been previously autoscaled. Equation 2 
allows one to underline some interesting properties of the 
RV coefficient: RV is in the closed interval [0,1]. RV(X, 
Y) = 0 if and only if Cxy = 0. RV(X, Y) = 1 means that 
all distances between objects are proportional in the two 
configurations. RV(X, Y) appears as a squared cosine of 
a generalized angle between the p-dimensional space 
spanned by the columns of X and the q-dimensional space 
spanned by Y. 

Another vector correlation has been earlier described by 
Hotelling (1936), but the advantages of the RV coefficient 
were illustrated by Escoufier (1973). 

Let Y be a subset of r variables of X, denoted by X,,), 
then RV(X, X,,)) quantifies the ability of these variables 
to summarize the whole information. In other words, the 
closer to 1 RV(X, X,,)) is, the better X,,) is as a substitute 
for X to obtain identical principal components. Because 
the exhaustive computation of the (p’) RV coefficients 
could require too much computer time, a forward stepwise 
selection of variables has been therefore developed (Bonifas 
et al., 1984). The kth variable is then introduced in order 
to optimize RV(X, X(k)), when k - 1 compounds have 
already been selected. As soon as the increase of RV be- 
comes negligible, or when RV is close enough to l ,  the 
introduction of variables is stopped. No statistical test of 
the significance of a RV value exists. In practice, since the 
magnitude of RV value is comparable to that of a squared 
correlation, we consider that an RV value of around 0.95 
indicates good similarity exists between the whole and the 
reduced PCA. 

Classification of Variables. The algorithm called 
Nu6es Dynamiques has been largely described by Diday 
et al. (1980). In our approach this method works as follows: 
(a) We want to obtain r clusters of variables, where r is 
the number of selected variables by RV coefficient. (b) 
We allow these variables to be the initial centers. (c) We 
assign each variable to the cluster whose center is the most 
squared correlated with it. (d) A stop condition is applied 
if no variable has been moved at step c to another cluster, 
then we keep the current clusters. (e) For each cluster, 
we define a new center as the first principal component 
of its variables, and then go to step c. 

Step b allows us to reach our target, which is to obtain 
as much as possible selected variables as heads of clusters 
of well-correlated compounds. This is the reason why a 
hierarchical cluster analysis was not chosen. 

Principal-Coordinate Analysis and  Minimum 
Spanning Tree of Variable Clusters. We assume that 
the raw data are not variables recorded on individuals, but 
a symmetric matrix whose elements are coefficients of 
similarity between the objects. PCO (Gower, 1966; Piggott 
and Sharman, 1986) is then able to find a low-dimensional 
space in which location of sample reflects as well as pos- 
sible the interindividual distances expressed in these 
coefficients of similarity. 

MST (Gower, 1969), which assumes the same kind of 
data as PCO, is a tree, spanning all of the objects, com- 
posed of straight-line segments joining pairs of individuals 
with no closed loops and for which the sum of lengths of 
its segments is minimum. 
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Table I. Volatile Compounds Ranked According to the RV 
Selection 

ster, code" RVb 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

Selected Compoun 
unknown 3 
2-methylethyl propanoate 
1-pentnanol 
fenchone 
linalool 
hexyl acetate 
pinocamphone 
unknown 1 
heptanal 
benzaldehyde 
trans-hexenyl acetate 
y-butyrolactone 
p-cymen-9-01 

Ids 
A1  
B1 
c1 
D1 
E l  
F1 
G1 
H1 
M1 
J1 
K1 
L1 
M2 

Unselected Compounds 
trans-2-hexenol 
6-octalactone 
6-methyl-5- hepten-2-one 
p-cymen-8-01 
1 -hexanol 
dihydroactinidiolide 
nonanal 
unknown 7 
y -nonalactone 
trans-2-hexenal 
terpinen-4-01 
amyl acetate 
isopinocamphone 
phenylacetalde hyde 
benzyl alcohol 
butyl acetate 
2-pentanone 
cis-hexenol 
a-terpineol 
y -decalactone 
acetophenone 
camphor 
y -hexalactone 
unknown 2 
2-heptanone 
P-ionone 
decanal 
isobutyl propanoate 
octanal 
y-octalactone 
y-lactone 
unknown 6 
unknown 5 
cis-3-hexenyl acetate 
pentanal 
2,4-hexadienal 
2,5-hexanedione 
2-pentanol 
&decalactone 
2-phenylethanol 
1-butanol 
hexanal 
verbenone 

c2 
H2 
M3 
E2 
D2 
H3 
B2 
E3 
L2 
c 3  
52 
F2 
G2 
E4 
53 
H4 
G3 
I1 
E5 
L3 
B3 
G4 
F3 
c 4  
E6 
L4 
54 
E7 
M4 
F4 
c 5  
A2 
C6 
B4 
M5 
F5 
B5 
L5 
H5 
55 
B6 
c7 
A3 

0.738 
0.823 
0.879 
0.902 
0.926 
0.953 
0.954 
0.960 
0.963 
0.965 
0.968 
0.971 
0.976 

0.977 
0.978 
0.981 
0.982 
0.985 
0.986 
0.987 
0.988 
0.989 
0.990 
0.992 
0.992 
0.993 
0.994 
0.994 
0.995 
0.995 
0.995 
0.995 
0.996 
0.996 
0.996 
0.996 
0.996 
0.997 
0.996 
0.996 
0.996 
0.997 
0.997 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.998 
0.999 
0.999 
0.999 
0.999 
0.999 
1.000 

"The letter indicates the cluster the compound is grouped in 
after variable classification. The number (increasing with the step) 
identifies the compound in the cluster. bValue of RV coefficient 
between selected compounds at  current step and the whole step of 
compounds. 

As PCO is a factorial design, the superimposition of 
MST on the first sample plot very often gives a clear idea 
of variations carried on the other dimensions. 

Of course, in our approach the objects are the compound 
clusters and coefficients of similarity are the RV coeffi- 
cients. 
EXPERIMENTAL SECTION 

Extraction, separation by GC, and identification of the 
flavor volatiles from the 18 samples of apricot have been 

A w r  i c o t  C u l t i v a r  

A Precoce de Tyrinthe 

A Palsteym 

Mon iau i  

D Rouge niu Roussi l lon 

0 P o l o m a i s  

0 B e r g e r o n  

Figure 1. Superimposed sample plot (1,2) of the whole and the 
reduced PCA. Ends of straight lines give new locations of apricots 
in the reduced PCA. 

- 1 1  

Figure 2. Superimposed sample plot (3,4) of the whole and the 
reduced PCA. See caption, Figure 1. 

described by Guichard and Souty (1988). 
The data obtained have been directly transferred to a 

MINI6 BULL computer for statistical analysis. 
PCA has been performed with use of the SPAD statis- 

tical package (Lebart and Morineau, 1985). The directives 
PCO and MST from GENSTAT (INRA Biometrie, 1982) 
have been run on a DPS8 BULL computer under a 
MULTICS operating system. The other programs have 
been written in Fortran for the MINI6 computer. 
RESULTS AND DISCUSSION 

Principal-Component Analysis. Results of the whole 
PCA are only given in order to show the efficiency of the 
RV selection. 

Names of the compounds are itemized in Table I, while 
those of apricot cultivars are first given in Table 11. 

The six first selected variables would certainly give a 
good picture of the whole PCA (RV = 0.953). However, 
13 compounds (RV = 0.976) were finally retained, because 
this number is closer to the number of chemical classes 
noticed in this list of compounds. 

The superimposition of the sample plot of the whole and 
the reduced PCA (Figures 1 and 2) shows that the location 
of the individuals is not significantly modified by the RV 
selection. The improvement of the percentage of the 
variance loaded on the four first principal components, 
given in Figures 1 and 2, is not only a consequence of the 
lower number of variables but also an effect of the decrease 
of the noise and of redundancies between variables. 
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Table 11. Averaue Values (Standard Deviations) ( d k g )  of Variables Ranged in Clusters for each Cultivar 
Precoce de Rouge du 

selected compounds code Tyrinthe Palsteyn Moniqui Roussillon Polonais Bergeron 
1162 (677) 1246 (275) 764 (234) 481 (292) 201 (43) 41 (12) unknown 3 

unknown 6 
verbenone 
2-methylethyl propanoate 
nonanal 
acetophenone 
cis-3-hexenyl acetate 
2,5-hexanedione 
1-butanol 
1-pentanol 
trans-2-hexenol 
trans-2-hexenal 
unknown 2 
y-lactone 
unknown 5 
hexanal 
fenchone 
1-hexanol 
linalool 
p-cymen-8-01 
unknown 7 
phenylacetaldehyde 
a-terpineol 
2- heptanone 
isobutyl propanoate 
hexyl acetate 
amyl acetate 
y- hexalactone 
y-octalactone 
2,4-hexadienal 
pinocamphone 
isopinocamphone 
2-pentanol 
camphor 
unknown 1 
A-octalactone 
dihydroactinidiolide 
butyl acetate 
y-decalactone 
cis-3-hexenol 
benzaldehyde 
terpinen-4-01 
benzyl alcohol 
decanal 
2-phenylethanol 
trans-hexenyl acetate 
y -butyrolactone 
y-nonalactone 
y -decalactone 
P-ionone 
2-pentanol 
heptanal 
p-cymen-9-01 
6-methyl-5-hepten-2-one 
octanal 
pentanal 

A1  
A2 
A3 
B1 
B2 
B3 
B4 
B5 
B6 
c1 
c 2  
c 3  
c 4  
c 5  
C6 
c 7  
D1 
D2 
E l  
E2 
E3 
E4 
E5 
E6 
E7 
F1 
F2 
F3 
F4 
F5 
G1 
G2 
G3 
G4 
H1 
H2 
H3 
H4 
H5 
I1 
51 
52 
53 
54 
55 
K1 
L1 
L2 
L3 
L4 
L5 
M1 
M2 
M3 
M4 
M5 

1319 (800) 
3502 (2612) 
371 (177) 
308 (113) 
488 (179) 
246 (137) 
142 (81) 

3731 (2015) 
0 (0) 

3209 (2134) 
4635 (1742) 
154 (87) 

6168 (1324) 
0 (0) 

1331 (502) 
93 (27) 

2071 (862) 
3019 (2508) 
1582 (1305) 
1972 (1422) 
2405 (749) 
1423 (1583) 
125 (79) 
266 (258) 

5244 (3132) 
570 (319) 

3164 (3914) 
1615 (817) 

0 (0) 
357 (204) 

1793 (1145) 
235 (137) 
293 (199) 

1085 (679) 
171 (68) 

2597 (580) 
8446 (5471) 
1808 (838) 
949 (5'10) 

11639 (5530) 
907 (522) 
824 (733) 
149 (91) 
128 (55) 
103 (75) 

0 (0) 
261 (190) 

2526 (1072) 
0 (0) 

238 (124) 
112 (48) 
316 (334) 
197 (98) 
161 (79) 
350 (300) 

1460 (387) 
3115 (1192) 
176 (35) 
224 (107) 
218 (88) 

0 (0) 
81 (22) 

2256 (1678) 
0 (0) 

3980 (2524) 
26800 (3135) 

821 (119) 
3121 (630) 

0 (0) 
14049 (3918) 

257 (51) 
8036 (2649) 
1021 (558) 
812 (338) 
852 (188) 
569 (91) 
869 (456) 

0 (0) 
90 (12) 

1250 (694) 
76 (51) 

2856 (546) 
2022 (431) 

0 (0) 
573 (68) 

2185 (176) 
318 (135) 
351 (40) 
578 (122) 
365 (251) 

0 (0) 
4090 (2949) 
5807 (3380) 
473 (354) 

5848 (1626) 
1024 (175) 

0 (0) 
115 (38) 
135 (48) 
16 (12) 

3237 (1112) 
680 (157) 

37310 (9882) 
1151 (468) 
7382 (1768) 

71 (12) 
168 (58) 
138 (5) 
121 (21) 
282 (27) 

753 (222) 
1863 (551) 
277 (76) 
410 (94) 
386 (89) 
176 (76) 
106 (20) 

1997 (956) 
0 (0) 

19685 (5514) 
8252 (6728) 
333 (365) 

1673 (762) 
983 (200) 

3513 (1506) 
266 (64) 

4223 (1121) 
864 (230) 
982 (200) 
621 (151) 
217 (55) 
635 (237) 

0 (0) 
94 (53) 

13140 (5835) 
675 (314) 

9203 (2797) 
4040 (1119) 

173 (71) 
231 (58) 

1068 (301) 
142 (57) 
141 (44) 
380 (134) 
470 (218) 
649 (148) 

9779 (12436) 
7716 (3711) 

11527 (2634) 
12778 (3938) 
1713 (665) 
1730 (356) 
154 (66) 
210 (50) 

0 (0) 
0 (0) 

391 (134) 
21024 (6881) 

204 (47) 
90 (36) 

102 (21) 
237 (98) 
120 (37) 
135 (23) 
205 (62) 

1054 (355) 
2123 (1013) 
379 (118) 
243 (72) 
348 (89) 
113 (49) 
60 (42) 

957 (739) 
426 (130) 

28500 (20300) 
70018 (9984) 
1461 (727) 

0 (0) 
2330 (594) 

22828 (4626) 
141 (121) 

7615 (4337) 
1240 (849) 

0 (0) 
1134 (251) 

0 (0) 
555 (549) 

0 (0) 
57 (44) 

783 (680) 
582 (114) 
287 (54) 
365 (172) 

0 (0) 
243 (52) 

1198 (232) 
314 (146) 
231 (178) 

0 (0) 
0 (0) 

554 (214) 
1348 (964) 

97 (63) 
13767 (8223) 
1198 (649) 
631 (305) 
198 (165) 
37 (11) 

100 (47) 
0 (0) 

50 (46) 
154 (51) 

1373 (837) 
0 (0) 

379 (118) 
223 (73) 
244 (87) 
166 (106) 
185 (132) 
501 (196) 

303 (62) 
678 (226) 
200 (64) 
180 (46) 
242 (45) 
206 (92) 
53 (8) 

2475 (798) 
0 (0) 

1251 (278) 
19046 (4831) 

421 (142) 
3091 (948) 
1408 (297) 
2845 (715) 

82 (28) 
1509 (378) 
153 (33) 

0 (0) 
207 (79) 
341 (131) 
290 (131) 

0 (0) 
236 (139) 

6953 (2270) 
543 (188) 

3466 (279) 
1578 (444) 

0 (0) 
77 (9) 

332 (42) 
71 (33) 
57 (9) 

1643 (498) 
404 (242) 

2708 (946) 
17051 (7334) 
12629 (5255) 

682 (143) 
2941 (448) 
343 (105) 
93 (18) 
27 (23) 
19 (9) 
0 (0) 
0 (0) 

490 (169) 
28171 (9504) 

0 (0) 
200 (64) 
66 (22) 

114 (63) 
70 (33) 
77 (26) 
72 (16) 

The factor-loading plots (Figures 3 and 4) show how 
cumbersome the interpretation of data with 56 variables 
would be. As correlations between selected variables and 
the principal components are almost the same in the two 
PCA, the almost identical sample locations have the same 
meaning. 

The RV coefficient selects compounds among the dif- 
ferent significant directions of the factor-loading plots and 
proportionally to the number of heavily loaded variables 
in these directions. Five variables from the thirteen (Al, 
B1, El ,  G1, M2) are highly negatively correlated with the 
first principal component, which carries 40% of the var- 
iance. Two variables (Fl,  H1) are highly positively cor- 
related with the second axis and one negatively (Cl). M1 
and J1 are more specially directed along the first and 
second bisectors of the first principal plane. The selection 

of uncorrelated variables (Dl, K1, L1) with these two first 
principal components justifies the consideration of the 
third and fourth principal components (Figure 4). 

Thus, interpretation of sample variations observed in 
Figures 1 and 2, in terms of these 13 compounds (whose 
quantities per variety are given in Table 111, is stated 
below: 

Precoce de Tyrinthe, positively located on the first axis, 
is very poor in volatile compounds. 

Polonais, negatively located on the second axis, is the 
only cultivar containing 1-pentanol (Cl). This variety does 
not contain the unknown 1 (Hl)  and is the richest in 
heptanal (Ml). 

Moniqui, located at  the center of Figure 1 but clearly 
separated from the other varieties on the third axis, is 
characterized by the presence of y-butyrolactone (Ll) and 
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Figure 3. Correlations between volatile compounds and the two 
first principal Components of the whole PCA. Compound codes 
refer to those in Table I. Ends of straight lines give new corre- 
lations of selected variables in the reduced PCA. 

F5 I 

Figure 4. Correlations between volatile compounds and the third 
and fourth principal components of the whole PCA. See caption, 
Figure 3. 

to lesser extent by pinocamphone (Gl), unknown 3 (Al), 
and fenchone (Dl). 

Palsteyn and Rouge du Roussillon, globally located on 
the second bisector of Figure 1, contain the highest 
amounts of benzaldehyde (Jl) and are also rich in hexyl 
acetate (Fl). These two cultivars are separated along the 
fourth axis due to the presence of trans-hexenyl acetate 
(K1) in Palsteyn. 

Bergeron, located on the first bisector of Figure 1, is 
rather poor in volatile compounds but the richest in un- 
known 1 (Hl)  and relatively rich in hexyl acetate (Fl). 

As stated in the introduction, our approach will now 
consist of establishing links between the selected com- 
pounds and the others. 

Classification of Compounds. The algorithm of Nu6es 
Dynamiques gives, in four iterations, the stable distribution 
in 13 clusters stated in Table 11. 

In this classification, each cluster contains at least one 
of the RV-selected compounds, except cluster I composed 
of cis-3-hexenol alone. These variables are truly good 
heads of groups because all of the information given by 
the above interpretation of the reduced PCA is conserved 
when any compound is substituted to its head of group 
(Table 11). For instance, Polonais, which is the only variety 
containing 1-pentanol (Cl), is the variety richest in all of 
the other components of cluster C and the poorest in y- 
lactone (C5). This opposition is absolutely logical because 
two negatively correlated variables can have a high squared 
correlation and then be in the same group. The whole 
correlation matrix of Table I11 shows that C5 is the only 
example of this situation. All of the other interpretations 
could be checked by reference to Table 11. However, 
Bergeron variety, which has been found to be only rela- 
tively rich in hexyl acetate (Fl) ,  does not contain 2,4- 
hexadienal (F5). This aldehyde has only been identified 
in Rouge du Roussillon. So variables, present in only one 
variety, are not systematically selected by RV coefficient: 
1-pentanol (Cl) represents the head of cluster C, but on 
the contrary, 2,Chexadienal (F5) is the last selected var- 
iable in cluster F. 

The standard deviations show rather large values (Table 
11). These variations account for the natural variability 
of the apricots within the same variety. In spite of this 
variability, the varietal interpretation of the reduced PCA 
has been successfully transposed to the unselected com- 
pounds. So one could ask if any selection of 13 compounds 
(one per cluster) would give a satisfactory RV value. This 
hypothesis has been tested by simulation: An average RV 
value equal to 0.944 (with a standard deviation equal to 
0.020) has been obtained from 10000 drawing lots ac- 
cording to this classification. When the simulation was 
carried out from 10 000 drawing lots without any classi- 
fication, the average RV value was only equal to 0.907 (with 
a standard deviation of 0.036). These two simulations show 
that, with the classification, the RV value is significantly 
higher than without classification, accounting for a fairly 
good flexibility to choose variables in a same cluster but 
still does not reach the high RV value (0.976) obtained with 
the first 13 selected variables. 

We now examine how compounds are distributed into 
the different clusters (Table 11): Clusters A and G are only 
composed of sesquiterpenic ketones. The mass spectra of 
unknowns 3 and 6 of cluster A (Guichard and Souty, 1988) 
show that these compounds are also sesquiterpenic ke- 
tones. Cluster C is composed of C5 or C6 aliphatic com- 
pounds, except for y-lactone, which is negatively correlated 
with the others as previously discussed. Other aliphatic 
compounds are located in cluster M. Cluster E is prin- 
cipally composed by terpenic alcohols. Cluster F contains 
acetates and y-lactones. The other y-lactones are located 
in cluster L. The &-lactones are all present in cluster H. 
Cluster J contains phenolic compounds. Cluster B cannot 
be characterized by any chemical class. Clusters J, K, and 
D contain only one or two compounds. 

It is noticable that compounds seem to aggregate glob- 
ally according to the chemical classes. 

Diagonal blocks of the correlation matrix, given in Table 
111, point out the good statistical homogeneity of the 
clusters. This fact is confirmed by the high mean-squared 
correlation (MSC) of blocks and the high percentage as- 
sociated to the first principal component (PC1) in each 
cluster given in Table IV. Note that in Tables I11 and IV 
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typical of Rouge du Roussillon, cluster M is more repre- 
sentative of the cultivar Bergeron. These two branches, 
which contain the most important compounds for apricot 
aroma, are located on the positive part of axis 2 and allow 
us to distinguish three typical varieties from the others 
(Guichard and Souty, 1988). 

The branch M, C, I is located on the negative part of 
axis 2. I t  contains most of the aliphatic alcohols and al- 
dehydes. These compounds have very high-level concen- 
trations in Polonais and are not typical for apricot aroma 
because of their herbaceous aromatic notes. The last 
branch D, L with two ketones and three y-lactones char- 
acterizes Moniqui variety, which is also rich in sesqui- 
terpenic ketones. These latter compounds are responsible 
for flowery aromatic notes. Unfortunately, cluster L is very 
poorly represented in the first coordinate plot; in fact it 
defines the third coordinate, and so its compounds are 
uncorrelated with the other y-lactones. 

Figure 5 appears as a good chemical map of essential 
variability in our apricot sample, although the two first 
coordinates account for only 40% of the global variance 
between clusters. 

Some varieties have been found to be the richest in 
compounds having typical apricot flavor notes. However, 
a sensory analysis would be necessary to postulate that 
these varieties possess the most typical overall apricot 
aroma. 
CONCLUSION 

Sampling and classification of individuals are classical 
topics in statistics. Allowing the separation of many 
compounds, gas chromatography transposes these topics 
from individuals to variables. This paper demonstrated 
the efficiency of the RV coefficient to classify the variables 
and reduce their number. 

More generally, the RV coefficient can be considered as 
an unifying tool for linear multivariate statistical methods 
(Robert and Escoufier, 1976). It could be of a great interest 
to obtain correlations between sensory and instrumental 
data and should therefore become a powerful tool for food 
data analysis. 

\\ 

Figure 6. First PCO sample plot and superimposed MST of 
compound clusters. Cluster letters and RV values refer to those 
in Table IV. 

the order of clusters has been arranged according to cluster 
similarities. So, in this matrix, the absolute values of 
correlations generally decrease as distances from the di- 
agonal increase. 

Choosing 13  clusters probably forces too sharp a clas- 
sification for the whole variation. First, this probably 
explains the presence of small clusters. Second, some 
clusters could be very similar; for instance, the seven 
sesquiterpenic ketones of clusters A and G have the same 
meaning in the factor loading plots of PCA (Figure 3 and 
4). All of these reasons justify the next study of cluster 
proximities. 

Proximities between Cluster Compounds. A study 
of the relationship between groups amounts to consider- 
ation of the extra-diagonal blocks of Table 111. A useful 
summary of these data is obtained by computing the RV 
matrix between the clusters (Table IV). The first prin- 
cipal-coordinate plot and the minimum spanning tree of 
this similarity matrix are given in Figure 5. 

This tree is composed of four branches converging to 
cluster A and G. Axis 1, which accounts for 21% of the 
total variance, shows the ability of the clusters to dis- 
criminate the different cultivars. The clusters, which are 
typical of a variety as seen with the results of PCA, are 
located on the negative part of this axis and the less dis- 
criminative clusters on the positive part. Axis 2, which 
accounts for 18% of the total variance, gives the variations 
between the branches. 

According to these observations, the sesquiterpenic ke- 
tones found in clusters A and G seem to be a base in the 
apricot aroma because no large variations in quantities are 
observed between the different cultivars. 

We now examine the different branches. The branch 
E, B, K contains the terpenic alcohols (cluster E), which 
are known to give an important contribution to the overall 
apricot quality (Tang and Jennings, 1967,1968). These 
compounds are more abundant in Palsteyn, and this is also 
true, but in a lower extent, for compounds of clusters B 
and K. Phenolic compounds, such as benzaldehyde 
(cluster J), some y-lactones (cluster F), and the &lactones 
(cluster M) are joined in the same branch. These are key 
compounds for apricot aroma (Rodriguez et al., 1980; 
Chairotte et al., 1981). However, if clusters J and F are 
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